InterviewSolution
Saved Bookmarks
| 1. |
Use differentials to approximate the cube root of 127. |
|
Answer» `y = f(x) = (x)^(1/2)` `(127)^(1/3) = f(x + /_ x) ` when `x=125 & /_x=2` `f(x+ /_ x) = /_ y + f(x) ` `f(x) = f(125) = (125)^(1/3) = 5` `/_ y = dy = (dy/dx) /_/x` `= d/dx(x^(1/3)) xx 2` `= [1/(3x^(2/3))] xx 2` `= 2/(3x^(2/3))` `= 2/(3 xx25) = 2/75` `/_ y = 0.027` `f(x+ /_x ) = f(127) = (127)^(1/3) = 5 + 0.027= 5.027 ` Answer |
|