InterviewSolution
Saved Bookmarks
| 1. |
Use Euclid’s division algorithm to find the HCF of 135 and 225. |
|
Answer» Given integers here are 225 and 135. On comparing, we find 225 > 135. So, by applying Euclid’s division lemma to 225 and 135, we get 867 = 225 x 3 + 192 Since the remainder ≠ 0. So we apply the division lemma to the divisor 135 and remainder 90. ⇒ 135 = 90 x 1 + 45 Now we apply the division lemma to the new divisor 90 and remainder 45. ⇒ 90 = 45 x 2 + 0 Since the remainder at this stage is 0, the divisor will be the HCF. Hence, the H.C.F of 225 and 135 is 45. |
|