1.

Using binomial theorem, find the value of `(0.99)^(15)` up to four places of decimal.

Answer» We have
`(0.99)^(15)=(1-0.01)^(15)`
`=1-.^(15)C_(1) xx(0.01) + .^(15)C_(2) xx (0.01)^(2)-.^(15)C_(3) xx (0.01)^(3) +...`
[neglecting higher powers of 0.01]
`=1-15 xx(0.01) + 105 xx (0.0001)-455 xx (0.000001)+...`
`=1-0.15+0.0105 + 0.000455 = 0.860045.`
Hence, `(0.99)^(15) = 0.860045.`


Discussion

No Comment Found

Related InterviewSolutions