

InterviewSolution
Saved Bookmarks
1. |
Using divisibility test, write the smallest digit and the greatest digit in the blank space of __4321, so that the number formed is divided by 3. Also, mention |
Answer» <html><body><p><strong>Step-by-step explanation:</strong></p><p>We know that the divisibility of 3 is the <a href="https://interviewquestions.tuteehub.com/tag/sum-1234400" style="font-weight:bold;" target="_blank" title="Click to know more about SUM">SUM</a> of the digits which is divisible by 3 </p><p></p><p>just like your question, </p><p></p><p><strong>let </strong><strong>the </strong><strong>blank </strong><strong>space </strong><strong>be </strong><strong>x</strong></p><p></p><p><strong>x </strong><strong>+</strong><strong>4</strong><strong>+</strong><strong>3</strong><strong>+</strong><strong>2</strong><strong>+</strong><strong>1</strong><strong>=</strong><strong> </strong><strong> </strong><strong>x </strong><strong>+</strong><strong>1</strong><strong>0</strong><strong> </strong></p><p></p><p><strong>Now,</strong><strong> </strong><strong>we </strong><strong>have </strong><strong>to </strong><strong>think </strong><strong>that </strong><strong>what </strong><strong>is </strong><strong>smallest </strong><strong>or </strong><strong>gratest </strong><strong>no.</strong><strong> </strong><strong>which </strong><strong>should </strong><strong>be</strong><strong> </strong><strong>take </strong><strong>the </strong><strong>place </strong><strong>of </strong><strong>x.</strong><strong> </strong><strong>and </strong><strong>divisible </strong><strong>by </strong><strong>Theni.</strong><strong>3</strong><strong> </strong></p><p></p><p></p><p><strong>So,</strong><strong> </strong><strong>the </strong><strong>multiples </strong><strong>of </strong><strong>3</strong><strong> </strong><strong>:</strong><strong> </strong><strong>3</strong><strong>,</strong><strong>6</strong><strong>,</strong><strong>9</strong><strong>,</strong><strong>1</strong><strong>2</strong><strong>,</strong><strong>1</strong><strong>5</strong><strong>,</strong><strong>1</strong><strong><a href="https://interviewquestions.tuteehub.com/tag/8-336412" style="font-weight:bold;" target="_blank" title="Click to know more about 8">8</a></strong><strong>,</strong><strong>2</strong><strong>1</strong><strong>,</strong><strong>2</strong><strong>4</strong><strong>,</strong><strong>2</strong><strong>7</strong><strong>,</strong><strong>3</strong><strong>0</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong> </strong></p><p></p><p><strong>so </strong><strong>the </strong><strong>suitable </strong><strong>no.</strong><strong> </strong><strong>is </strong><strong>2</strong><strong> </strong><strong>,</strong><strong> </strong><strong>5</strong><strong>,</strong><strong> </strong><strong>8</strong><strong>.</strong><strong>.</strong><strong> </strong><strong>and </strong><strong>many </strong><strong>more </strong><strong>which </strong><strong>makes </strong><strong>the </strong><strong>digits </strong><strong>divisible </strong><strong>by </strong><strong>3</strong></p><p></p><p><strong>For </strong><strong>the </strong><strong>suitable</strong><strong> </strong><strong>value </strong><strong>of </strong><strong>x=</strong><strong> </strong><strong>2</strong><strong> </strong><strong>:</strong><strong> </strong><strong>2</strong><strong>+</strong><strong>4</strong><strong>+</strong><strong>3</strong><strong>+</strong><strong>2</strong><strong>+</strong><strong>1</strong><strong>=</strong><strong>1</strong><strong>2</strong><strong> </strong><strong>which </strong><strong>is </strong><strong>divisible </strong><strong>by </strong><strong>3</strong><strong> </strong></p><p><strong>so,</strong><strong> </strong><strong>the </strong><strong>digits </strong><strong>are </strong><strong>2</strong><strong>4</strong><strong>3</strong><strong>2</strong><strong>1</strong></p><p></p><p><strong>For </strong><strong>the</strong><strong> suitable</strong><strong> </strong><strong>value </strong><strong>of</strong><strong> </strong><strong>x </strong><strong>=</strong><strong> </strong><strong>5</strong><strong> </strong><strong>:</strong><strong> </strong></p><p><strong>5</strong><strong>+</strong><strong>4</strong><strong>+</strong><strong>3</strong><strong>+</strong><strong>2</strong><strong>+</strong><strong>1</strong><strong> </strong><strong>=</strong><strong> </strong><strong>1</strong><strong>5</strong><strong> </strong><strong>which </strong><strong>is </strong><strong>divisible </strong><strong>by </strong><strong>3</strong><strong> </strong></p><p><strong>so,</strong><strong> </strong><strong>the</strong><strong> digits</strong><strong> are</strong><strong> </strong><strong>5</strong><strong>4</strong><strong>3</strong><strong>2</strong><strong>1</strong></p><p></p><p><strong>For </strong><strong>the </strong><strong>suitable</strong><strong> value</strong><strong> of</strong><strong> x</strong><strong> </strong><strong>=</strong><strong> </strong><strong>8</strong></p><p><strong>8</strong><strong>+</strong><strong>4</strong><strong>+</strong><strong>3</strong><strong>+</strong><strong>2</strong><strong>+</strong><strong>1</strong><strong>=</strong><strong>1</strong><strong>8</strong><strong> </strong><strong>which </strong><strong>is </strong><strong>divisible </strong><strong>by </strong><strong>3</strong><strong> </strong></p><p><strong>so </strong><strong>the </strong><strong>digits </strong><strong>are </strong><strong>8</strong><strong>4</strong><strong>3</strong><strong>2</strong><strong>1</strong></p><p></p><p></p><p></p><p><strong>PLEASE </strong><strong>MARK </strong><strong>ME </strong><strong>AS </strong><strong>A </strong><strong><a href="https://interviewquestions.tuteehub.com/tag/brainlist-2485655" style="font-weight:bold;" target="_blank" title="Click to know more about BRAINLIST">BRAINLIST</a></strong></p></body></html> | |