| 1. |
Using standard formulae expand: x4 + 1 by x4 |
|
Answer» -step explanation:Section 6.3 1. 10 3. 30 5. 6 outcomes 7. 15 outcomes 9. 13 outcomes 11. 25 outcomes 13. 4 15. 93 17. 16 19. 30 21. 13 23. 18 25. 25,600 27. 3381 29. a. 288 B. 288 31. 256 33. 10 35. 286 37. 4 39. a. 8,000,000 b. 30,000 c. 4,251,528 41. a. 43 = 64 b. 4n c. 42.1×1010 43. a. 166 = 16,777,216 b. 163 = 4096 c. 162 = 256 d. 766 45. (10 × 9 × 8 × 7 × 6 × 5 × 4) × (8 × 7 × 6 × 5) = 1,016,064,000 possible casts 47. a. 263 × 103 = 17,576,000 b. 262 × 23 × 103= 15,548,000 c. 15,548,000 − 3 × 103 = 15,545,000 49. a. 4 b. 4 c. There would be an infinite number of routes. 51. a. 72 b. 36 53. 96 55. a. 36 b. 37 57. Step 1: Choose a day of the WEEK on which JAN 1 will fall: 7 choices. Step 2: Decide whether or not it is a leap year: 2 choices. Total: 7 × 2 = 14 possible calendars. 59. 1900 61. Step 1: choose a position in the Left-Right direction: m choices. Step 2: choose a position in the Front-Back direction: n choices. Step 3: choose a position in the Up-Down direction: r choices. Hence there are m · n · r possible outcomes. |
|