1.

Using the Maxwell distribution function, calculate the mean velocity projection `(v_x)` and the mean value of the modules of this projection `lt lt |v_x| gt gt` if the mass of each molecule is equal to `m` and the gas temperature is `T`.

Answer» `lt v_x gt = 0` bt symmetry
`lt |v_x| gt = int_(- oo)^oo |v_x| e-(mv_x^2)/(2 kT) dv_x// int_0^oo (-mv_x^2)/(e 2kT) dv_x = int_0^oo v_x (-mv_x^2)/(e 2 kT) dv_x//int_0^oo (-mv^2)/(e 2 kT)dv_x`
=`sqrt((2kT)/(m)) int_0^oo ue^(-u^2) du//int_0^oo e^(-u^2) du`
=`sqrt((2kT)/(m)) int_0^oo (1)/(2) e^(-x) dx//int_0^oo e^(-x) (dx)/(2 sqrt(x))`
=`sqrt((2 kT)/(m)) Gamma (1) //Gamma((1)/(2)) = sqrt((2 kT)/(m pi))`.


Discussion

No Comment Found

Related InterviewSolutions