1.

Using the principle of mathematical induction. Prove that `(1^(2)+2^(2)+…+n^(2)) gt n^(3)/3 " for all values of " n in N`.

Answer» Let `P(n): (1^(2)+2^(2)+…+n^(2)) gt n^(3)/3`.
When n =1, LHS = `1^(2) = 1 and RHS = 1^(3)/3 = 1/3`.
Since ` 1 gt 1/3`, it follows that P(1) is true.
Let P(k) be true. Then,
`P(k): (1^(2)+2^(2)+…+k^(2)) gt k^(3)/3`. ….(i)
Now, ` 1^(2)+2^(2)+...+k^(2)+(k+1)^(2) `
` ={1^(2)+2^(2)+...+k^(2)}+(k+1)^(2)`
` gt k^(3)/3 + (k+1)^(2)` [using (i)]
` = 1/3*{k^(3)+3(k+1)^(2)} = 1/3 *{k^(3)+3k^(2)+6k+3}`
` = 1/3 [{(k^(3)+1+3k(k+1)}+(3k+2)]=1/3*[(k+1)^(3) +(3k+2)]`
` gt 1/3 (k+1)^(3)`.
` :. P(k+1): 1^(2)+2^(2)+...+k^(2)+(k+1)^(2) gt 1/3 (k+1)^(3)`.
Thus, P(k+1) is true, whenever P(k) is true.
`:. ` P(1) is true and P(k+1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, it follows that
`(1^(2)+2^(2)+3^(2)+...+n^(2)) gt n^(3)/3 " for all " n in N`.


Discussion

No Comment Found