1.

Using the principle of mathematical induction prove that `:``1. 3+2. 3^2+3. 3^3++n .3^n=((2n+1)3^(n+1)+3)/4^`for all `n in N`.

Answer» Let the given statement be P(n) . Then,
`P(n) : 1*3+2*3^(2)+3*3^(3)+…+n*3^(n) = ((2n-1)3^(n+1)+3)/4` .
Putting n = 1 in the given statement, we get
LHS ` = 1*3 and RHS = ((2XX1-1)3^(1+1)+3)/4=(1xx9+3)/4 = 12/4 = 3`.
`:. ` LHS = RHS.
Thus , P(1) is true.
Let P(k) be true. Then,
` P(k) : 1*3+2*3^(2)+3*3^(3)+...+k*3^(k) = ((2k-1)3^(k+1)+3)/4 `. ...(i)
` :. 1*3+2*3^(2)+3*3^(30+...+k*3^(k)+(k+1) 3^((k+1))`
`=((2k-1)3^(k+1)+3)/4 +(k+1) 3^(k+1)" " ` [using (i)]
`=((2k-1)3^(k+1)+3+4(k+1)3^(k+1))/4 = ((2k-1+4k+4)3^(k+1)+3)/4 `
` = ((6K+3) 3^(k+1)+3)/4 = ({2(k+1)-1}3^((k+1)+1)+3)/4 ` .
` :. P(k+1): 1*3+2*3^(2)+3*3^(3)+...+(k+1)*3^(k+1)=({2(k+1)-1}3^((k+1)+1)+3)/4`.
This shows that P(k+1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k+1) is true, whenever P(k) is true.
Hence, by principle of mathematical induction, we have
` 1*3+2*3^(2)+3*3^(3)+...+ n*3^(n) = ((2n-1) 3^(n+1)+3)/4 " for all values of " n in N`.


Discussion

No Comment Found