InterviewSolution
Saved Bookmarks
| 1. |
Using vector method, find the incentre of the triangle whose vertices are P(0,4,0),Q(0,0,3) and R(0,4,3). |
|
Answer» Let `barp , bar q, barr`, be the position vectro of the points P,Q,R respectively. `:. barp= 4hatj,` `barq=3hatk,` `barr=4hatj+3hatk` Consider `bar (PQ)=barq-barp=3hatk-4hatj` `=-4hatj+3hatk` `|bar(PQ)|=sqrt((-4)^(2)+3^(2))=sqrt(16+9)` `sqrt(25)=5` `|bar(PQ)|=sqrt((-4)^(2)+3^(2))=sqrt(16+9)` `bar(QR)= bar r-barq=4hatj+3hatk-3hatk` `=4hatj` `|bar(QR)|=sqrt(4^(2))=4` `bar(PR)=barr-barp=4hatj+3hatj-4hatj` `=3hatk` `:. |bar(PR)|=sqrt(3^(2))=3` Let `|bar(QR)|=x=4` `|bar(PR)|=y=3 and |bar(PQ)|` `=z=5` If `h(barh)` is the incentre of `Delta PQR` , then `bar h=(xbarp+ybarq+zbarr)/(x+y+z)` `=(4*(4hatj)+3*(3hatk)+5*(4hatj+3hatk))/(4+3+5)` `=(16hatj+9hatk+20hatj+15hatk)/(12)` `(36hatj+24hatk)/(12)=3hatj+2hatk` `:. H-=(0,3,2)` is the incentre of `Delta PQR` |
|