InterviewSolution
Saved Bookmarks
| 1. |
`vecA=(2veci+veck),vecB=(veci+vecj+veck) and vecC=4veci-vec3j+7veck` determine a vector `verR` satisfying `vecRxxvecB=vecCxxvecB and vecR.vecA=0` |
|
Answer» Correct Answer - `-hati-8hatj+2hatk` we are given that `vecA=2hati + hatk,vecB=hati+hatj+hatk and vecC= 4hati -3hatj +7hatk and ` to determine a vector `vecR` such that `vecR xx vecB = vecC xx vecB and vecR.vecA =0` Let `vecR =x hati + yhatj + zhatk` then `vceR xx vecB = vecC xx vecB` `Rightarrow |{:(hati,hatj,hatk),(x,y,z),(1,1,1):}|=|{:(hati,hatj,hatk),(4,-3,7),(1,1,1):}|` `or (y-z) hati - (x-z) hatj + (x-y) hatk` ` =-10 hati + (x -z) hatj + 7 hatk` y-z= -10 x-z =-3 x-y= 7 Also ` vecR.vecA=0` ` Rightarrow 2x +z=0` Subsituting y =x-7 and z =-2x from (ii) and (iv), respectively in (i) , we get x-7 +2x =-10 3x=-3 x=-1,y =-8 and z=2 |
|