1.

What are the sum and difference of the identity function and the reciprocal function ?

Answer» Let `f:RtoR:f(x)=xandg:R-{0}toR:g(x)=(1)/(x)` be the identity function and the reciprocal function respectively.
Then, dom `(f)nn"dom "(g)=RnnR-{0}=R-{0}`.
`:.(f+g):R-{0}toR:(f+g)(x)=f(x)+g(x)=(x+(1)/(x))`.
Hence, `(f+g)(x)=(x+(1)/(x))"for all "x""inR-{0}`.
And, `(f-g):R-{0}toR:(f-g)(x)=f(x)-g(x)=(x-(1)/(x))`.
Hence, `(f-g)(x)=(x-(1)/(x))"for all "x""inR-{0}`.


Discussion

No Comment Found