1.

What are the techniques used to avoid overfitting?

Answer»

If we can detect overfitting at an early stage, it will be very useful for our training model. There are several methods up our sleeves that can be used to avoid overfitting-

  • Cross-validation: Cross-validation is a resampling technique for evaluating machine learning models on a small sample of data.
  • Remove features: We can remove the unnecessary features of the models to encompass the outliers.
  • Early stopping: Early stopping is a type of REGULARIZATION used in machine learning to MINIMIZE overfitting when using an iterative METHOD like gradient descent to train a learner. Early stopping CRITERIA specify how many iterations can be completed before the learner becomes over-fit.
  • Training with more data: We can train our model with more data to accommodate outliers.
  • Regularization: In machine learning, regularization is a method to solve the over-fitting problem by adding a penalty term with the cost function.
  • Ensembling: Ensemble learning refers to combining the predictions from two or more models.


Discussion

No Comment Found