1.

What is \(\rm \cot{\frac{A}{2}}+ \tan {\frac{A}{2}}\) equal to?1. 2 sec A2. 2 cosec A3. sin A4. sec A

Answer» Correct Answer - Option 2 : 2 cosec A

Concept:

  • sin2 θ + cos2 θ = 1.
  • sin 2θ = 2 sin θ cos θ.

 

Calculation:

Consider the expression \(\rm \cot{\frac{A}{2}}+ \tan {\frac{A}{2}}\).

\(\rm \frac{\cos\frac{A}{2}}{\sin\frac A2}+ \frac{\sin \frac{A}{2}}{\cos\frac{A}{2}}\)

\(\rm \frac{\cos^2\frac{A}{2}+\sin^2\frac{A}{2}}{\sin\frac A2\cos\frac{A}{2}}\)

\(\rm \frac{1}{\sin\frac A2\cos\frac{A}{2}}\)

\(\rm \frac{2}{2\sin\frac A2\cos\frac{A}{2}}\)

\(\rm \frac {2}{\sin A}\)

= 2 cosec A



Discussion

No Comment Found

Related InterviewSolutions