1.

What is `((sqrt(3)+i)/(sqrt(3)-i))^(6)` equal to, where `I = sqrt(-1)` ?A. 1B. `1//6`C. 6D. 2

Answer» Correct Answer - A
`((sqrt(3)+i)/(sqrt(3)-i))=(sqrt(3)+i)/(sqrt(3)-i)xx(sqrt(3)+i)/(sqrt(3)+i)`
`(3+i^(2)+2 sqrt(3)i)/(3-i^(2))=(3-1+2 sqrt(3)i)/(3+1)`
`=(2(1+sqrt(3)i))/(4)=(1)/(2)+i(sqrt(3))/(2)`
`=("cos"(pi)/(3)+"i sin"(pi)/(3))=e^(i(pi)/(3)`
`therefore ((sqrt(3)+i)/(sqrt(3)-i))^(6)=(e^(i(pi)/(3)))^(6)=e^(i2pi)cos 2 pi + i sin 2 pi`
`= 1 + 0.i = 1`


Discussion

No Comment Found