1.

What is ` sum_(r=0)^(1) ""^(n+r)C_(n)` equal to ?A. `.^(n+2)C_(1)`B. `.^(n+2)C_(n)`C. `.^(n+3)C_(n)`D. `.^(n+2)C_(n+1)`

Answer» Correct Answer - A::D
`underset(r=0)overset(1)sum .^(n+r)C_(n)=.^(n)C_(n)+.^(n+1)C_(n)`
`=1+((n+1)!)/((n+1-n)!n!)=1+((n+1)(n!))/(n!)`
`=1+n+1=n+2`
`.^(n+2)C_(n+1)((n+2)!)/((n+2-n-1)!(n+1)!)`
`=((n+2)(n+1)!)/((n+1)!)=n+2`
`" "`OR
`underset(r=0)overset(1)sum .^(n+r)C_(n)=.^(n)C_(n)+.^(n+1)C_(n)`
`=1+(n+1)=n+2`
Now,
`.^(n+2)C_(1)=((n+2)!)/(1!(n+2-1)!)=((n+2)(n+1)!)/((n+1)!)=(n+2)`
`therefore` Option (a and d) is correct.


Discussion

No Comment Found