1.

What is the coefficient of `x^(17)` in the expansion of `(3x-(x^(3))/(6))^(9)` ?A. `(189)/(8)`B. `(567)/(2)`C. `(21)/(16)`D. None of these

Answer» Correct Answer - A
Given expansion is
`(3x-(x^(3))/(6))^(9)" where "a=3x, b=(-x^(3))/(6), n=9`
`"Now, General Term "=T_(r+1)=""^(n)C_(r)(a)^(n-r),b^(r )`
`=""^(9)C_(r),(3x)^(9-r)((-x^(3))/(6))^(r )=""^(9)C_(r).3^(9-r)x^(9-r).((-1)^(r )x^(3r))/(6^(r ))`
`=""^(9)C_(r)3^(9-r)(-1)^(r)(x^(9+2r))/(6^(r))`
We can get coeff of `x^(17)` when
`9+2r=17`
`rArr" "2r=17-9`
`rArr" "r=(8)/(2)=4`
Hence, required coefficient
`=""^(9)C_(4)(3^(5))/(6^(4))=(126xx3)/(16)=(189)/(8)`


Discussion

No Comment Found