Saved Bookmarks
| 1. |
What is the order N of the low pass Butterworth filter in terms of KP and KS?(a) \(\frac{log[(10^\frac{K_P}{10}-1)/(10^\frac{K_s}{10}-1)]}{2 log(\frac{\Omega_P}{\Omega_S})}\)(b) \(\frac{log[(10^\frac{K_P}{10}+1)/(10^\frac{K_s}{10}+1)]}{2 log(\frac{\Omega_P}{\Omega_S})}\)(c) \(\frac{log[(10^\frac{-K_P}{10}+1)/(10^\frac{-K_s}{10}+1)]}{2 log(\frac{\Omega_P}{\Omega_S})}\)(d) \(\frac{log[(10^\frac{-K_P}{10}-1)/(10^\frac{-K_s}{10}-1)]}{2 log(\frac{\Omega_P}{\Omega_S})}\)This question was posed to me by my college director while I was bunking the class.Question is taken from Design of Low Pass Butterworth Filters in portion Digital Filters Design of Digital Signal Processing |
|
Answer» The correct choice is (d) \(\frac{log[(10^\frac{-K_P}{10}-1)/(10^\frac{-K_s}{10}-1)]}{2 log(\frac{\Omega_P}{\Omega_S})}\) |
|