

InterviewSolution
Saved Bookmarks
1. |
What is the system function of the equivalent digital filter? H(z) = Y(z)/X(z) = ?(a) \(\frac{(\frac{bT}{2})(1+z^{-1})}{1+\frac{aT}{2}-(1-\frac{aT}{2}) z^{-1}}\)(b) \(\frac{(\frac{bT}{2})(1-z^{-1})}{1+\frac{aT}{2}-(1+\frac{aT}{2}) z^{-1}}\)(c) \(\frac{b}{\frac{2}{T}(\frac{1-z^{-1}}{1+z^{-1}}+a)}\)(d) \(\frac{(\frac{bT}{2})(1-z^{-1})}{1+\frac{aT}{2}-(1+\frac{aT}{2}) z^{-1}}\) & \(\frac{b}{\frac{2}{T}(\frac{1-z^{-1}}{1+z^{-1}}+a)}\)This question was addressed to me in an interview for job.I want to ask this question from IIR Filter Design by the Bilinear Transformation in chapter Discrete Time Systems Implementation of Digital Signal Processing |
Answer» The CORRECT choice is (d) \(\frac{(\frac{BT}{2})(1-z^{-1})}{1+\frac{aT}{2}-(1+\frac{aT}{2}) z^{-1}}\) & \(\frac{b}{\frac{2}{T}(\frac{1-z^{-1}}{1+z^{-1}}+a)}\) |
|