1.

What is the value of \(\int_2^3\)cos⁡(x)-\(\frac {3}{x4}\)dx .(a) sin (3) – sin (2)(b) sin (3) – sin (9) – \(\frac {19}{288}\)(c) sin (8) – sin (2) – \(\frac {19}{288}\)(d) sin (3) – sin (2) – \(\frac {19}{288}\)This question was posed to me during an interview for a job.This intriguing question comes from Definite Integral in chapter Integrals of Mathematics – Class 12

Answer» RIGHT option is (d) SIN (3) – sin (2) – \(\frac {19}{288}\)

BEST explanation: \(\int_2^3\)cos⁡(X)-\(\frac {3}{x4}\)dx = \(\int_2^3\)sin(x) dx + \(\int_2^3 \frac {3}{4}\)x^-3 dx

= (sin (3) + \(\frac {3}{4}\)3^-3) – (sin (2) + \(\frac {3}{4}\)2^-3)

= sin (3) – sin (2) – \(\frac {19}{288}\)


Discussion

No Comment Found

Related InterviewSolutions