1.

What will be the general solution of the differential equation d^2y/dx^2 = e^2x(12 cos3x – 5 sin3x)? (here, A and B are integration constant)(a) y = e^x sin3x + Ax + B(b) y = e^2x sin3x + Ax + B(c) y = e^2x sin3x + A(d) Data inadequateI had been asked this question at a job interview.This question is from Linear Second Order Differential Equations in section Differential Equations of Mathematics – Class 12

Answer»

The correct OPTION is (b) y = e^2x sin3x + Ax + B

The explanation is: Given, d^2y/dx^2 = e^2x(12 cos3x – 5 sin3x) ………(1)

Integrating (1) we get,

dy/dx = 12∫ e^2xcos3x dx – 5∫ e^2x sin3x dx

= 12 * (e^2x/2^2 + 3^2)[2cos3x + 3sin3x] – 5 * (e^2x/2^2 + 3^2)[2sin3x – 3cos3x] + A (A is integrationconstant)

So dy/dx = e^2x/13 [24 cos3x + 36 sin3x – 10 sin3x + 15 cos3x] + A

= e^2x/13(39 cos3x + 26 sin3x) + A

=> dy/dx = e^2x(3 cos3x + 2 sin3x) + A ……….(2)

Again integrating (2) we get,

y = 3*∫ e^2x cos3xdx + 2∫ e^2x sin3xdx + A ∫dx

y = 3*(e^2x/2^2 + 3^2)[2cos3x + 3sin3x] + 2*(e^2x/2^2 + 3^2)[2sin3x – 3cos3x] + Ax + B(B is integration constant)

y = e^2x/13(6 cos3x + 9 sin3x + 4 sin3x – 6 cos3x) + Ax + B

or, y = e^2x sin3x + Ax + B



Discussion

No Comment Found

Related InterviewSolutions