Saved Bookmarks
| 1. |
When the temperature is increased, heat is supplied which increases the kinetic energy of the reacting molecules. This shall increase the number of collisions and ultimately the rate of reaction shall be enhanced. Arrhenius suggested a equation which describes K as a function of temperature, i.e. k=Ae^(-E_(a)//RT) where k= rate constant A= a constant (frequency factor) E_(a)= energy of activation log_(10)k=log_(10)A-(E_(a))/(2.303R)[(1)/(R )] Y=C+MX It is the equation of straight line with negative slope. On plotting log_(10)k against [(1)/(T)] we get a straight line as shown below : The slope gives activation energy and intercept gives frequency factor. Also log.(k_(2))/(k_(1))=(E_(a))/(2.303)[(T_(2)-T_(1))/(T_(1)T_(2))] A first order reaction is 50% complete in 30 minutes at 27^(@)C and 10 minutes at 47^(@)C . The energy of activation of the reaction is |
|
Answer» `43.84 kJ//mol` |
|