InterviewSolution
| 1. |
Which equation is used to compute the critical Mach number of the airfoil?(a) (Cp)crit = \(\frac {2}{γM_{crit}^{2}} \bigg [ \frac {1 + \frac {1}{2}(γ – 1)M_{crit}^{2}}{1 + \frac {1}{2}(γ – 1)} \bigg ]^{\frac {γ}{γ – 1}}\) – 1(b) (Cp)crit = \(\frac {2}{γM_{crit}^{2}} \bigg [ \frac {1 + \frac {1}{2}(γ – 1)M_{crit}^{2}}{1 + \frac {1}{2}(γ – 1)} \bigg ]^{\frac {γ}{γ + 1}}\) + 1(c) (Cp)crit = γM\(_{crit}^{2} \bigg [ \frac {1 + \frac {1}{2}(γ – 1)}{1 + \frac {1}{2}(γ – 1)} \bigg ]^{\frac {γ}{γ – 1}}\) – 1(d) (Cp)crit = γM\(_{crit}^{2} \bigg [ \frac {1 + \frac {1}{2}(γ – 1)}{1 + \frac {1}{2}(γ – 1)M_{crit}^{2}} \bigg ]^{\frac {γ}{γ – 1}}\) – 1The question was asked during an internship interview.This interesting question is from Critical Mach Number in chapter Linearized and Conical Flows of Aerodynamics |
|
Answer» The CORRECT choice is (a) (Cp)CRIT = \(\FRAC {2}{γM_{crit}^{2}} \bigg [ \frac {1 + \frac {1}{2}(γ – 1)M_{crit}^{2}}{1 + \frac {1}{2}(γ – 1)} \bigg ]^{\frac {γ}{γ – 1}}\) – 1 |
|