1.

Which of the following are examples of the singleton set? (i) {x : x ϵ Z, x2 = 4}. (ii) {x : x ϵ Z, x + 5 = 0}. (iii) {x : x ϵ Z, |x| = 1}. (iv) {x : x ϵ N, x2 = 16}. (v) {x : x is an even prime number}

Answer»

(i) Integers = …-3, -2, -1, 0, 1, 2, 3, … 

Given equation: 

x2 = 4 

⇒ x = √4 

⇒ x = ± 2 

If x = -2, then x2 = (-2)2 = 4 

If x = 2, then x2 = (2)2 = 4 

So, there are two elements in a set. 

∴ It is not a singleton set. 

(ii) Integers = -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, … 

Given equations: 

x + 5 = 0 

⇒ x + 5 – 5 = 0 – 5 

⇒ x = -5 

So, there is only 1 element in a given set. 

∴ It is a singleton set. 

(iii) Integers = …, -2, -1, 0, 1, 2, …

Given equation: |x| = 1 

If x = -1, then |x| = |-1| = 1 

If x = 1, then |x| = |1| = 1 

So, there are 2 elements in a given set 

∴ It is not a singleton set. 

(iv) Natural Numbers = 1, 2, 3, … 

Given equation: x 2 = 16 

⇒ x = √16 ⇒ x = ± 4 

⇒ x = -4, 4 

but x = -4 not possible because x ∈ N

So, there is only 1 element in a set. 

∴ It is a singleton set. 

(v) Prime number = 2, 3, 5, 7, 11, … 

Even Prime number = 2 

∴ It is a singleton set.



Discussion

No Comment Found

Related InterviewSolutions