1.

Which of the following functions from A to B are one-one and onto?(i) f1 = {(1, 3), (2, 5), (3, 7)}; A = {1, 2, 3}, B = {3, 5, 7}(ii) f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}(iii) f3 = {(a, x), (b, x), (c, z), (d, z)}; A = {a, b, c, d,}, B = {x, y, z}. 

Answer»

(i) Given f1 = {(1, 3), (2, 5), (3, 7)}; A = {1, 2, 3}, B = {3, 5, 7}

Injectivity:

f1(1) = 3

f1(2) = 5

f1(3) = 7

⇒ Every element of A has different images in B.

So, f1 is one-one.

Surjectivity:

Co-domain of f1 = {3, 5, 7}

Range of f1 = set of images  =  {3, 5, 7}

⇒ Co-domain = range

So, f1 is onto.

(ii) Given f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}

f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}

Injectivity:

f2(2) = a

f2(3) = b

f2(4) = c

⇒ Every element of A has different images in B.

So, f2 is one-one.

Surjectivity:

Co-domain of f2 = {a, b, c}

Range of f2 = set of images = {a, b, c}

⇒ Co-domain = range

So, f2 is onto.

(iii) Given f3 = {(a, x), (b, x), (c, z), (d, z)} ; A = {a, b, c, d,}, B = {x, y, z}

Injectivity:

f3(a) = x

f3(b) = x

f3(c) = z

f3(d) = z

⇒ a and b have the same image x.

Also c and d have the same image z

Therefore, f3 is not one-one.

Surjectivity:

Co-domain of f1 = {x, y, z} 

Range of f1 = set of images = {x, z}

So, the co-domain  is not same as the range.

Hence, f3 is not onto.



Discussion

No Comment Found