1.

Which of the following is (are) NOT the square of a `3xx3`matrix with real entries?`[1 0 0 0 1 0 0 0-1]`(b) `[-1 0 0 0-1 0 0 0-1]``[1 0 0 0 1 0 0 0 1]`(d) `[1 0 0 0-1 0 0 0-1]`A. `{:[(1,0,0),(0,1,0),(0,0,-1)]:}`B. `{:[(-1,0,0),(0,-1,0),(0,0,-1)]:}`C. `{:[(1,0,0),(0,1,0),(0,0,1)]:}`D. `{:[(-1,0,0),(0,-1,0),(0,0,-1)]:}`

Answer» Correct Answer - A::B
Let `{:A=[(1,0,0),(0,1,0),(0,0,-1)]:}`.Then, `absA=-1`.
If A is a prefect square of matrix `A_1`. Then,
`A_(1)^2=A`
`rArr abs(A_1)^2=absArArr abs(A_1)^2=-1rArr A_1` cannot be a real matrix
So, option(a) correct.
Let `{:R=[(-1,0,0),(0,-1,0),(0,0,-1)]:}` be the sqare of a `3xx3` matrix `B_1`, Then,
`B=B_1^2rArrabs(B_1)^2=absBrArrabs(B_1)^(2) = {:abs((-1,0,0),(0,-1,0),(0,0,-1))=-1:}`
So, B cannot be the perfect square of a real matrix.
In option (c), the given matrix is the identity matrix `I_3` such that `I_3=I_3^2`
Conisder the matrix `{:[(1,0,0),(0,-1,0),(0,0,-1)]:}` given in option (d). Clearly,
`{:[(1,0,0),(0,-1,0),(0,0,-1)]=[(1,0,0),(0,0,1),(0,-1,0)][(1,0,0),(0,0,1),(0,-1,0)]:}`
Thus, the matrix given in option(d) is the perfect square of a real matrix.


Discussion

No Comment Found

Related InterviewSolutions