

InterviewSolution
Saved Bookmarks
1. |
Which of the following is the solution set of the equation `sin^-1 x = cos ^-1 x+ sin ^-1(3x-2)`A. `[0,1/3]`B. `[1/3,2/3]`C. `[0,2/3]`D. none of these |
Answer» For the existance of the given equation we must have `-1lexle1and-1le3x-1le1rarr0lexle2/3` Now `sin^(1)x=cps^(-1)x+sin^(-1)(3x-1)` `rarr sin^(-1)x-cos^(-1)x=sin^(-1)(3x-1)` `rarr 2sin^(-1)x-(pi)/(2)=sin^(-1)(3x-1)` `rarr sin(2sin^(-1)x-(pi)/(2))=sin(sin^(-1))(3x-1)` `rarr =cos(2sin^(-1)x)=3x-1` `rarr -{1-2sin^(2)(sin^(-1)x))}=3x-1` `rarr -(1-2x^(2)=3x-1)` `rarr 2x^(2)-3x=0rarr x=0 3/2rarrx=0` |
|