1.

Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, … is (a) purely real (b) purely imaginary

Answer»

Given,

A.P is 12 + 8i, 11 + 6i, 10 + 4i, … 

Here, 

a1 = a = 12 + 8i, 

a2 = 11 + 6i 

Common difference, 

d = a2 – a1 

= 11 + 6i – (12 + 8i) 

= 11 – 12 + 6i – 8i 

= -1 – 2i 

We know,

an = a + (n – 1)d 

Where a is first term or a1 and d is common difference and n is any natural number.

∴ an = 12 + 8i + (n – 1) -1 – 2i 

⇒ an = 12 + 8i – n – 2ni + 1 + 2i 

⇒ an = 13 + 10i – n – 2ni 

⇒ an = (13 – n) + (10 – 2n)i 

To find purely real term of this A.P., 

Imaginary part have to be zero 

∴ 10 – 2n = 0 

⇒ 2n = 10

⇒ n = \(\frac{10}{2}\)

⇒ n = 5 

Hence, 

5th term is purely real 

To find purely imaginary term of this A.P., 

Real part have to be zero 

∴ 13 – n = 0 

⇒ n = 13 

Hence, 

13th term is purely imaginary.



Discussion

No Comment Found