| 1. |
Without using Pythagoras theorem, show that the points (1,-4),(2,-3) and (4,-7) form a right angled triangle. |
|
Answer» Answer: †D= (X
−x 1
) 2 +(y 2
−y 1
) 2
Solution : Let Point be, A ( 1 , - 4 ) B ( 2 , - 3 ) C ( 4 , - 7 ) \tt\mapsto AB = \sqrt{ {(2 - 1)}^{2} + {( - 4 + 3)}^{2} }↦AB= (2−1) 2 +(−4+3) 2
\tt\mapsto AB = \sqrt{ {(1)}^{2} + {( - 1)}^{2} }↦AB= (1) 2 +(−1) 2
\tt\mapsto AB = \sqrt{ 2} \: units.↦AB= 2
units. \rule{40}1 \tt \mapsto BC = \sqrt{ {(4 - 2)}^{2} + {( - 7 + 3)}^{2} }↦BC= (4−2) 2 +(−7+3) 2
\tt \mapsto BC = \sqrt{ {(2)}^{2} + {( - 4)}^{2} }↦BC= (2) 2 +(−4) 2
\tt \mapsto BC = \sqrt{ 4 + 16 }↦BC= 4+16
\tt \mapsto BC = \sqrt{20 } \: units↦BC= 20
units \rule{40}1 \tt \mapsto AC = \sqrt{ {(4 - 1)}^{2} + {(7 - 4)}^{2} }↦AC= (4−1) 2 +(7−4) 2
\tt \mapsto AC = \sqrt{9 + 9 }↦AC= 9+9
\tt \mapsto AC = \sqrt{18 } \: units.↦AC= 18
units. \rule{100}1 Yes, AB + AC = BC. And given point ABC lies with 90° angle. Verification : \tt \mapsto H^{2} = P^{2} + B^{2}↦H 2 =P 2 +B 2
\tt \mapsto BC^{2} = AB^{2} + AC^{2}↦BC 2 =AB 2 +AC 2
\tt \mapsto( \sqrt{20})^{2} =( \sqrt{ 2})^{2} + (\sqrt{18 } )^{2}↦( 20
) 2 =( 2
) 2 +( 18
) 2
\tt \mapsto 20 = 2+18↦20=2+18 \tt \mapsto 20= 20.↦20=20. |
|