1.

Write the domain and the range of the function, f(x) = \(\frac{ax+b}{bx-a}\).

Answer»

(i) domain

f(x) = \(\frac{ax+b}{bx-a}\)

As f(x) is a polynomial function whose domain is R except for the points where the denominator becomes 0. 

Hence x ≠ a/b

Domain is R a/{-b} 

(ii) Range

Let y = \(\frac{ax+b}{bx-a}\)

Y(bx-a) = ax +b 

byx -ay = ax + b 

byx -ax= ay +b 

x(by -a) = ay + b

x = \(\frac{ay+b}{by-a}\)

x is not defined when denominator is zero.

by – a ≠ 0 

y ≠ a/b 

Range is R-{a/b}.



Discussion

No Comment Found