1.

Write the following complex number in polar form :(i) `-3 sqrt(2) + 3 sqrt(2) i`(ii) `1+i`(iii) `(1+7i)/(2-i)^2`

Answer» (i) Let `z = - 3sqrt(2) + 3sqrt(2)i` Then,
`|z| = sqrt(-3sqrt(2)^(2) + (3sqrt(2))^(2)) =6`
Let `tan alpha |(Im(z))/(Re(z))| = 1 rArr alpha = (pi)/(4)`
Since the point reqresenting z lies in the second quadrant, the agrument of z is given by
`theta = pi - alpha - ((pi)/(4)) = ((3pi)/(4))`
So, the polar form of `z - 3sqrt(2)+3sqrt(2)`i si
`z=|z|(cos theta + i sin theta) = 6 (cos.(3pi)/(4) + i sin .(3pi)/(4))`
(ii) Let `z = 1+i.` Then `|z| = sqrt(1^(2)+1^(2)) = sqrt(2)`. Let
`tan alpha = |(Im(z))/(Re(z))| `
Then, `tan alpha|(1)/(1)| =1 or alpha = (pi)/(4)`
Since the point (1,1) representing z lies in the first quadrant, the argument of z is given by `theta = aloha = pi//4`. So, the polar form of `z =1 + i` is
`z =|z| (cos theta + isin theta) = (cos.(pi)/(4) +isin.(pi)/(4))`
(iii) Let `z = -1-i`. Then `|z| = sqrt((-1)^(2)+ (-1)^(2)) = sqrt(2)`
Let `tan alpha = |(Im(z))/(Re(z))|`
Then , `tan alpha = |(-1)/(-1)| = 1 or alpha = (pi)/(4)`
Since the point (-1,-1) representing z lies in the third quadrant, the argument of z is given by
`theta = -(pi -alpha) = - (pi-(pi)/(4))= (-3pi)/(4)`
So, the polar form of z = - 1- is
`z = |z| (cos theta + isin theta) = sqrt(2) {cos ((-3pi)/(4))+isin((-3pi)/(4)) }`
(iv) Let `z = 1 - i` . Then `|z|= sqrt(1+(-1)^(2)) = sqrt(2)`. Let
`tan alpha =|(Im(z))/(Re(z))|`
Then, `tan alpha =|(-1)/(1)| =1 or alpha = (pi)/(4)`
since the point (1,-1) lies in the fourth quadrant, the argument of z is given by `theta = alpha = - pi//4`. So the polar form of z = 1 - i si
`z =|z|(cos theta + isin theta) = sqrt(2) {cos((-pi)/(4)) +isin((-pi)/(4))} = sqrt(2) (cos.(pi)/(4) -isin.(pi)/(4))`
(v) Let `z = (1+7i) //[(2-i)^(2)]`. Then
`z = (1+7i)/(4-4i+^(2)) = (1+7i)/(3-4i) = ((1+7i)/(3-4))((3+4i)/(3+4i))=(-25+25i)/(25) = -1+i`
`therefore |z| = sqrt((-1)^(2) + (1)^(2) ) = sqrt(2)`
Let `alpha` be the acutue angle given by
`tan alpha =|(Im(z))/(Re(z))| = |(-1)/(1)| = 1`
Then `alpha = pi//4`. Since the point (-1,1) represeting z lies in the second quadrant, we have `theta = arg(z) = pi - alpha = pi - pi//4 = 3pi//4`
Hence, z in the polar form is given by
`z = sqrt(2) (cos. (3pi)/(4) + isin.(3pi)/(4))`


Discussion

No Comment Found

Related InterviewSolutions