InterviewSolution
Saved Bookmarks
| 1. |
`(x+(1)/(x))^(x)+x^((1+(1)/(x)))` |
|
Answer» माना `y=(x+(1)/(x))^(x)+x^((1+(1)/(x)))` माना `u=(x+(1)/(x))^(x)` तथा `v=x^(1+(1)/(x))` `therefore" "y=u+v" "rArr" "(dy)/(dx)=(du)/(dx)+(dv)/(dx)" …(1)"` अब `u=(x+(1)/(x))^(x)` `rArr" "logu=log(x+(1)/(x))^(x)=x log (x+(1)/(x))` `rArr" "(1)/(u)(du)/(dx)=x.(d)/(dx)log(x+(1)/(x))+log(x+(1)/(x))(d)/(dx)x` `rArr" "(du)/(dx)=u[(x)/(x+(1)/(x))(1-(1)/(x^(2)))+log(x+(1)/(x))]` `=(x+(1)/(x))^(x)[(x^(2)-1)/(x^(2)+1)+log(x+(1)/(x))]` तथा `v=x(1+(1))/(x)` `rArr" "logv=log{x^((1+(1)/(x)))}=(1+(1)/(x))logx` `rArr" "(1)/(v)(dv)/(dx)=(1+(1)/(x))(d)/(dx)logx+logx(d)/(dx)(1+(1)/(x))` `rArr" "(dv)/(dx)=v[(1+(1)/(x)).(1)/(x)+logx(-(1)/(x^(2)))]` `rArr" "(dv)/(dx)=x^((1+(1)/(x))).(1)/(x^(2))[x+1-logx]` `therefore` समीकरण (1 ) से `(dy)/(dx)=(x+(1)/(x))^(x)[(x^(2)-1)/(x^(2)+1)+log(x+(1)/(x))]+x((1+(1)/(x)).(1)/(x^(2)))[x+1-logx]` |
|