1.

X^2/(x+1)

Answer»

let I= ∫ x2/(x+1) dx

let x+1=t

⇒dx = dt

also since x+1=t ⇒ x=t-1

substituting values

∫ (t-1)2/t dt

⇒ ∫ (t2 + 1 -2t)/t dt

⇒ ∫ t2/t dt + ∫ 1/t dt - ∫ 2t/t dt

⇒ ∫ t dt + ∫ 1/t dt - ∫ 2 dt

⇒ t2/2 + log|t| - 2t

substituting value x+1 =t

⇒ (x+1)2/2 + log|x+1| - 2(x+1) + c



Discussion

No Comment Found

Related InterviewSolutions