1.

x and b are real numbers. If b > 0 and |x| > b, then A.x ∈ (–b, ∞) B. x ∈ [–∞, b) C. x ∈ (–b, b) D. x ∈ (–∞, –b)∪(b, ∞)

Answer»

D. x ∈ (-∞, -b) ∪ (b, ∞)

|x| > b

Hence, there are two cases,

x > b

⇒ x ∈ (b, ∞) [1]

and

-x > b

⇒ x < -b

⇒ x ∈ (-∞, -b) [2]

From [1] and [2], we get

⇒ x ∈ (-∞, -b) ∪ (b, ∞)



Discussion

No Comment Found

Related InterviewSolutions