InterviewSolution
Saved Bookmarks
| 1. |
x and b are real numbers. If b > 0 and |x| > b, then A.x ∈ (–b, ∞) B. x ∈ [–∞, b) C. x ∈ (–b, b) D. x ∈ (–∞, –b)∪(b, ∞) |
|
Answer» D. x ∈ (-∞, -b) ∪ (b, ∞) |x| > b Hence, there are two cases, x > b ⇒ x ∈ (b, ∞) [1] and -x > b ⇒ x < -b ⇒ x ∈ (-∞, -b) [2] From [1] and [2], we get ⇒ x ∈ (-∞, -b) ∪ (b, ∞) |
|