Saved Bookmarks
| 1. |
X=asectheta+btantheta y=atantheta+bsectheta prove that x2-y2=a2-b2 |
Answer» Solution:-Formula Used:-
Given:-▪︎x = asecθ + btanθ ➟ (x)² = (asecθ + btanθ)² ➟ x² = a²sec²θ + 2asecθbtanθ + b²tan²θ ------ eq.1 And▪︎y = atanθ + bsecθ By squaring both sides: ➟ (y)² = (atanθ + bsecθ)² ➟ y² = a²tan²θ + 2atanθsecθ + b²sec²θ ------ eq.2 Now,L.H.S. = x² - y² Putting eq.1 and eq.2, = a²sec²θ + 2asecθbtanθ + b²tan²θ - (a²tan²θ + 2atanθsecθ + b²sec²θ) = a²sec²θ + 2asecθbtanθ + b²tan²θ - a²tan²θ - 2atanθsecθ - b²sec²θ = a²sec²θ - a²tan²θ + b²tan²θ - b²sec²θ = a²(sec²θ - tan²θ) + b²(tan²θ - sec²θ) = a² × 1 + b² × -1 = a² - b² = R.H.S. Hence, PROVED. |
|