| 1. |
X che kimaat gheun 2x+2x3+7 |
|
Answer» The price of a smartphone is 5000 more than the cost of two feature phones & the cost of 4 feature phones and two smartphone is 88,000 . Exigency To Find : The cost of a smartphone and a feature phone. ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ❍ Let's Consider the cost price of smart phone and feature phone be Rs. x & Rs. y , respectively . ⠀⠀⠀⠀⠀⠀CASE I : The price of a smartphone is Rs. 5000 more than the cost of two feature phones . \begin{gathered}\qquad :\implies \sf x = 2y + 5000 \:\:\\\end{gathered} :⟹x=2y+5000
\begin{gathered}\qquad :\implies \bf x = 2y + 5000 \:\:\:\qquad\qquad \bigg\lgroup \sf{ Eq^n \: 1 }\bigg\rgroup\\\end{gathered} :⟹x=2y+5000 ⎩ ⎪ ⎪ ⎪ ⎧
Eq n 1 ⎭ ⎪ ⎪ ⎪ ⎫
⠀⠀⠀⠀⠀⠀CASE II : The cost of 4 feature phones and two smartphones is Rs. 88,000 . \begin{gathered}\qquad :\implies \sf 4y + 2x = 88000 \:\:\\\end{gathered} :⟹4y+2x=88000
\begin{gathered}\qquad :\implies \bf 4y + 2x = 88000 \:\:\:\qquad\qquad \bigg\lgroup \sf{ Eq^n \: 2}\bigg\rgroup\\\end{gathered} :⟹4y+2x=88000 ⎩ ⎪ ⎪ ⎪ ⎧
Eq n 2 ⎭ ⎪ ⎪ ⎪ ⎫
⠀⠀⠀⠀⠀⠀Now , Finding the cost of Smart phone & Feature phone : \begin{gathered}\qquad \:\maltese\:\bf{ From \:EQUATION \:2 \:\::}\\\end{gathered} ✠FromEquation2:
\begin{gathered}\qquad \dag\:\:\bigg\lgroup \sf{Equation \:2\:: 4y + 2x = 88000 }\bigg\rgroup \\\\\end{gathered} † ⎩ ⎪ ⎪ ⎪ ⎧
Equation2:4y+2x=88000 ⎭ ⎪ ⎪ ⎪ ⎫
\begin{gathered}\qquad :\implies \sf 4y + 2x = 88000 \:\:\\\end{gathered} :⟹4y+2x=88000
⠀⠀⠀⠀⠀⠀\begin{gathered}\UNDERLINE {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Eq^n\:1 \: : \::}}\\\end{gathered} ⋆NowBySubstitutingtheEq n 1::
\begin{gathered}\qquad \dag\:\:\bigg\lgroup \sf{Equation \:1\:: x = 2y + 5000 }\bigg\rgroup \\\\\end{gathered} † ⎩ ⎪ ⎪ ⎪ ⎧
Equation1:x=2y+5000 ⎭ ⎪ ⎪ ⎪ ⎫
\begin{gathered}\qquad :\implies \sf 4y + 2x = 88000 \:\:\\\end{gathered} :⟹4y+2x=88000
\begin{gathered}\qquad :\implies \sf 4y +2 (2y + 5000) = 88000 \:\:\\\end{gathered} :⟹4y+2(2y+5000)=88000
\begin{gathered}\qquad :\implies \sf 4y +4y + 10000 = 88000 \:\:\\\end{gathered} :⟹4y+4y+10000=88000
\begin{gathered}\qquad :\implies \sf 4y +4y = 88000 - 10000 \:\:\\\end{gathered} :⟹4y+4y=88000−10000
\begin{gathered}\qquad :\implies \sf 8y = 88000 - 10000 \:\:\\\end{gathered} :⟹8y=88000−10000
\begin{gathered}\qquad :\implies \sf 8y = 78000 \:\:\\\end{gathered} :⟹8y=78000
\begin{gathered}\qquad :\implies \sf y = \dfrac{ 78000}{8} \:\:\\\end{gathered} :⟹y= 8 78000
\begin{gathered}\qquad :\implies \sf y = \cancel {\dfrac{ 78000}{8}} \:\:\\\end{gathered} :⟹y= 8 78000
\begin{gathered}\qquad :\implies \bf y = 9750 \:\:\\\end{gathered} :⟹y=9750
\begin{gathered}\qquad :\implies \frak{\underline{\PURPLE{\:y = Rs.\: 9750 }} }\:\:\bigstar \\\end{gathered} :⟹ y=Rs.9750
★
⠀⠀⠀⠀⠀⠀\begin{gathered}\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: \: Value\:of\: y \ [ \ 9750 \ ] \:in \:Eq^n \:1 \::}}\\\end{gathered} ⋆NowBySubstitutingtheValueofy [ 9750 ]inEq n 1:
\begin{gathered}\qquad \dag\:\:\bigg\lgroup \sf{Equation \:1\:: x = 2y + 5000 }\bigg\rgroup \\\\\end{gathered} † ⎩ ⎪ ⎪ ⎪ ⎧
Equation1:x=2y+5000 ⎭ ⎪ ⎪ ⎪ ⎫
\begin{gathered}\qquad :\implies \sf x = 2y + 5000 \:\:\\\end{gathered} :⟹x=2y+5000
\begin{gathered}\qquad :\implies \sf x = 2(9750) + 5000 \:\:\\\end{gathered} :⟹x=2(9750)+5000
\begin{gathered}\qquad :\implies \sf x = 19500 + 5000 \:\:\\\end{gathered} :⟹x=19500+5000
\begin{gathered}\qquad :\implies \bf x = 24500 \:\:\\\end{gathered} :⟹x=24500
\begin{gathered}\qquad :\implies \frak{\underline{\purple{\:x \:= Rs.\: 24500 }} }\:\:\bigstar \\\end{gathered} :⟹ x=Rs.24500
★
Therefore, The cost of smartphone is : x = Rs. 24, 500 The cost of feature phone: y = Rs. 9,750 Therefore, ⠀⠀⠀⠀⠀\begin{gathered}\qquad \therefore {\underline{ \sf \:Cost \:of\:Smartphone \:and \:feature \:phone \:are\:\bf Rs. \ 24,500 \:\& \: Rs.\: 9,750\:\:\sf , \ respectively . }}\\\end{gathered} ∴ CostofSmartphoneandfeaturephoneareRs. 24,500&Rs.9,750, respectively.
⠀ |
|