1.

`x(dy)/(dx)+y-x+xycotx=0(x ne 0)`

Answer» `x(dy)/(dx)+y-x+xycotx=0`
`implies(dy)/(dx)+y((1)/(x)+cotx)=1`
यहाँ, `P=(1)/(x)+cotx` तथा `Q = 1`
`therefore I.F. =e^(intPdx)=e^(int((1)/(x)+cotx)dx)`
`=e^(logx)+logsinx`
`=e^(log(xsinx))=xsinx`
और व्यापक हल :
`y.(xsinx)=int1.xsinxdx+c=x(-cosx)`
`-int1.(-cosx)dx+c`
`impliesxysinx=-xcosx+sinx+c`


Discussion

No Comment Found