InterviewSolution
Saved Bookmarks
| 1. |
x,के सभी वास्तविक मानों के लिए `(1-x+x^2)/(1+x+x^2)` का न्यूनतम मान है : |
|
Answer» Correct Answer - B Let `y=(1-x+x^(2))/(1+x+x^(2))=1-(2x)/(1+x+x^(2))` `=1-(2)/((1)/(x)+1+x)` `impliesy=1-2/t` where `t=1/x+1+x` Now, y is minimum, where `2/t` is max `implies` is min. `therefore (dt)/(dx)=-(1)/(x^(2))+1=0` `impliesx=pm1` `(d^(2)t)/dx^(2)=(2)/(x^(2))gt0,` for `x=1` `therefore` Minimum value of y is `1-(2)/(1+1+1)=1-2/3=1/3` |
|