1.

`[ x tan(y/x) - y sec^2(y/x) ] dx + x sec^2 (y/x)] dy= 0`

Answer» Let `y = vx`
Then, `dy/dx = v+x(dv)/dx`
Our given equation becomes,
`[xtanv-vxsec^2 v]dx + xsec^2v dy = 0`
`=>-dy/dx = [xtanv-vxsec^2 v]/[xsec^2v]`
`=>-v-x(dv)/dx = tanv/(sec^2v) - v`
`=>- dx/x = (sec^2v dv)/tanv`
Now, integrating both sides,
`=> int - dx/x = int (sec^2v dv)/tanv`
Let `tanv = u => sec^2vdv = du`
`=> int - dx/x = int (du)/u`
`=>-ln(x)+c = ln(u)`
`=>c = ln(ux) `
`=>ln(xtanv) = c`
`=>ln(xtan(y/x)) = c`


Discussion

No Comment Found

Related InterviewSolutions