InterviewSolution
Saved Bookmarks
| 1. |
यदि `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n)`, साबित कीजिए कि `C_(1)+2.C_(2)+3.C_(3)+…+n.C_(n)=n2^(n-1)` |
|
Answer» दिया गया श्रेणी है : `C_(1)+2.C_(2)+3.C_(3)+...+n.C_(n)`, श्रेणी का r वाँ पद `t_(r)=t.""^(n)C_(r)=n.""^(n-1)C_(r-1)[because r.""^(n)C_(r)=n.^(n-1)C_(r-1)]` अब `C_(1)+2.C_(2)+3.C_(3)+......+n.C_(n)=underset(r=1)overset(n)sumr.""^(n)C_(r)` `=underset(r=1)overset(n)sumn.""^(n-1)C_(r-1)=n underset(r=1)overset(n)sum ""^(n-1)C_(r-1)` `=n[""^(n-1)C_(0)+""^(n-1)C_(1)+""^(n-1)C_(2)+......+""^(n-1)C_(n-1)]` `=n(1+1)^(n-1)=n.2^(n-1)` |
|