InterviewSolution
Saved Bookmarks
| 1. |
यदि `C_(r),""^(n)C_(r)` को सूचित करें तो साबित कीजिए कि `(C_(1))/(C_(0))+2.(C_(2))/(C_(1))+3.(C_(3))/(C_(2))+...+n.(C_(n))/(C_(n-1))=(n(n+1))/(2)` |
|
Answer» `t_(r)"(r वाँ पद)"=r.(""^(n)C_(r))/(""^(n)C_(r-1))` `=r(n!)/(r!(n-r)!).((r-1)!(n-r+1)!)/(n!)=n-r+1` L.H.S.`=t_(1)+t_(2)+...+t_(n)=n+(n-1)+(n-2)+...+1=(n(n+1))/(n)` |
|