1.

यदि `cosec theta+cot theta=m,` सिद्ध कीजिए कि `(m^(2)-1)/(m^(2)+1)=cos theta.`

Answer» यहाँ `cosec theta +cot theta=m`
`implies(cosec theta+cot theta)^(2)=m^(2)`
`impliescosec ^(2)theta+cot ^(2)theta+2cosec theta cot theta=m^(2)`
यहाँ, `L.H.S.=(m^(2)-1)/(m^(2)+1)=(cosec ^(2)theta+cot^(2)theta+2 cosec theta cottheta-1)/(cosec ^(2)theta+cot^(2)theta+cosec theta cot theta+1)`
`=(cot ^(2)theta+cot ^(2)theta+2 cosec theta cot theta)/(cosec ^(2)+cosec ^(2)theta+2cosec theta cot theta)`
`=(2cot^(2)theta+2cosec thetacot theta)/(2 cosec ^(2)theta+2 cosec theta cot theta)=(2cot theta(cot theta+cosec theta))/(2 cosec theta(cosec theta+cot theta))=(cot theta)/(cosec theta)`
`=((cos theta)/(sin theta))/((1)/(sin theta))=(cos theta)/(sin theta)xx(sin theta)/(1)=cos theta=R.H.S.`


Discussion

No Comment Found