InterviewSolution
Saved Bookmarks
| 1. |
यदि `tan^(2)alpha=1+2tan^(2)beta(alpha,beta` एक धनात्मक न्यूनकोण है तो `sqrt(2)cosalpha-cosbeta` किसके बराबर है? |
|
Answer» Correct Answer - a `tan^(2)alpha=1+2tan^(2)beta` `rArrsec^(2)alpha-1=1+2(sec^(2)beta-1)` `rArrsec^(2)alpha-1= 2sec^(2)beta-1` `rArr(1)/(cos^(2)alpha)=(2)/(cos^(2)beta)` `sqrt(2)cos alpha-cos beta=0` Alterante `tan^(2)alpha=1+2tan^(2)beta` Put `beta=45^(@)` `tan^(2)alpha=1+2 tan^(2)45^ (@)` `tan^(2)alpha=3` `tanalpha=sqrt(3)` `alpha=60^(@)` Put `alpha =60^(@).beta=45^(@)` `=sqrt(2)cos alpha=cosbeta=sqrt(2)cos60^(@)-cos45^(@)` `=sqrt(2)xx(1)/(2)-(1)/sqrt(2)=(1)/sqrt(2)-(1)/sqrt(2)=0` |
|