InterviewSolution
Saved Bookmarks
| 1. |
यदि `tanA=ntanB` और `sinA=m,sinB` तो `cos^(2)A` का मान है?A. `(m^(2)+1)/(n^(2)+1)`B. `(m^(2)+1)/(n^(2)-1)`C. `(m^(2)-1)/(n^(2)-1)`D. `(m^(2)-1)/(n^(2)+1)` |
|
Answer» Correct Answer - c `sinA =msinB` `sin^(2)A=m^(2)sin^(2)B`........(i) Now, `tan^(2)A=n^(2)tan^(2)B` `(sin^(2)A)/(cos^(2)A)=n^(2)(sin^(2)B)/(cos^(2)B)` from equation (i) `(1-cos^(2)A)/(n^(2)cos^(2)A)=((1-cos^(2)A))/((m^(2))/(1-(sin^(2)A)/(m^(2))))` `(1-cos^(2)A)/(n^(2)cos^(2)A)=(1-cos^(2)A)/(m^(2)-1+cos^(2)A) ` `rArrm^(2)-1+cos^(2)A=n^(2)cos^(2)A` `m^(2)-1=cos^(2)theta(n^(2)-1)` `cos^(2)A=(m^(2)-1)/(n^(2)-1)` |
|