1.

यदि `vec(A)=2hat(i)+hat(j)+hat(k)` तथा `vec(B)=hat(i)-hat(j)+2hat(k)` हो तो ज्ञात कीजिये - (i) `vec(A)*vec(B)` (ii) `vec(A)` व `vec(B)` के बीच कोण (iii) `vec(A)xxvec(B)` (iv) `vec(A)` व `vec(B)` के लम्बवत एकांक सदिश ।

Answer» (i) `vec(A)*vec(B)=A_(x)B_(x)+A_(y)B_(y)+A_(z)B_(z)`
`=2(1)+1(-1)+1(2)=2-1+2=3`
(ii) `A=sqrt(A_(x)^(2)+A_(y)^(2)+A_(z)^(2))=sqrt((2)^(2)+(1)^(2)+(1)^(2))=sqrt(6)`
`B=sqrt(B_(x)^(2)+B_(y)^(2)+B_(z)^(2))=sqrt((1)^(2)+(-1)^(2)+(2)^(2))=sqrt(6)`
`costheta=(vec(A)*vec(B))/(AB)=(3)/(sqrt(6)*sqrt(6))=(3)/(6)=(1)/(2)" ":." "theta=60^(@)`
(iii) `vec(A)xxvec(B)=|{:(hat(i),hat(j),hat(k)),(2,1,1),(1,-1,2):}|`
`=[(1xx2)-(1xx-1)]hat(i)-[(2xx2)-(1xx1)]hat(j)+[(2xx-1)-(1xx1)]hat(k)`
`=3hat(i)-3hat(j)-3hat(k)`
(iv) `hat(eta)(vec(A)xxvec(B))/(|vec(A)xxvec(B)|)=(3hat(i)-3hat(j)-3hat(k))/(sqrt((3)^(2)+(-3)^(2)+(-3)^(2)))`
`=(3hat(i)-3hat(j)-3hat(k))/(3sqrt(3))=(1)/(sqrt(3))(hat(i)-hat(j)-hat(k))`


Discussion

No Comment Found

Related InterviewSolutions