InterviewSolution
Saved Bookmarks
| 1. |
यदि ` xsqrt( (1+y) )+ ysqrt((1+ x))=0` तब सिद्ध कीजिए की `(dy)/(dx) =- (1+x)^(-2)` |
|
Answer» ` " "xsqrt ( (1+y))+ysqrt((1+x))=0 ` ` rArr" "xsqrt (( 1+y) )=-ysqrt((1+x))` ` rArr " "x^(2) (1+y)=y^(2) (1=x) ` ` " " `(दोनों और का वर्ग करने पर ) ` rArr" "(x^(2) -y^(2))+xy(x-y) =0 ` ` rArr " "(x-y) [x+ y+ xy] =0` `rArr x-y=0 ` या ` " " x+y (1+x) =0 ` यदि ` x- y=0 " "rArr " "y=x " "rArr " "(dy)/(dx) =1 ` yeh अभीष्ट परिणाम है अतः ` " "x+y (1+x) =0 " "rArr y= (-x) (1+x)` `therefore (dy)/(dx) =- [((1+x) (d)/(dx) (x) -x(d)/(dx) (1+x))/((1+x)^(2))]` ` " "=-[ ((1+ x)-x) /((1+x )^(2))=- [(1)/((1+x)^(2))]` ` therefore " "(dy)/(dx) =-(1+x)^(2) ` |
|