InterviewSolution
Saved Bookmarks
| 1. |
यदि ` y= a^(x^(a^(x)...infty ))` तब सिद्ध कीजिए की ` " "(dy)/(dx) =(y^(2) log y)/(x(1-y log x log y ) )` |
|
Answer» `" "y= a ^(x^(a^(x...infty )))" "(because y= a^(x^(a^(x...infty ))))` ` rArr " "y= a ^(x^(y))` दोनों पक्षों का लघुगणक लेने पर, ` " "log y= x^(y) log a ` पुनः दोनों पक्षों का लघुगणक लेने पर, ` " "log log y =ylog x+ log log (a) ` दोनों पक्षों का x के सापेक्ष अवकलन करने पर, `" "(1)/(log y) (dy)/(dx) =y (d)/(dx) log x +log x (dy)/(dx) +0` या ` " "(1)/(ylog y)(dy)/(dx) =(y)/(x) +log x (dy)/(dx) ` ` rArr " "((1)/(ylog y ) -log x) (dy)/(dx) =(y)/(x) ` ` rArr " "((1-ylog ylog x )/(y log y ))(dy)/(dx) =(y)/(x)` ` (dy)/(dx) =(y^(2) log y)/(x(1-y log ylog x))` |
|