1.

यदि `y=a^(x^(a^(x^(...oo))))`, तो सिद्ध कीजिए कि `(dy)/(dx)=(y^(2)logy)/(x(1-ylogxlogy))`

Answer» `y=a^(x^(a^(x^(...oo))))`,
`y=a^(x^(y))`
`rArr" "logy=loga^(x^(y))=x^(y).loga`
`rArr" "log(logy)=logx^(y)+log(loga)`
`" "=ylogx+log(loga)`
दोनों पक्षों का x के सापेक्ष अवकलन करने पर
`(1)/(ylogy)(dy)/(dx)=(y)/(x)+logx.(dy)/(dx)+0`
`rArr" "((1)/(ylogy)-logx)(dy)/(dx)=(y)/(x)`
`rArr" "((1-ylogxlogy))/(ylogy).(dy)/(dx)=(y)/(x)`
`rArr" "(dy)/(dx)=(y^(2)logy)/(x(1-ylogxlogy))` यही सिद्ध करना था ।


Discussion

No Comment Found