InterviewSolution
Saved Bookmarks
| 1. |
यदि ` y= [log (x+ sqrt(x^(2)+1))]^(2)` तो सिद्ध कीजिये की` " "(x^(2)+1) (d^(3)y)/(dx^(3))+3x (d^(2)y)/(dx^(2))+(dy)/(dx)=0` |
|
Answer» दिया है- ` " "y= [log (x+ sqrt(x^(2)+1)]^(2)` दोनों पक्षों का x के सापेक्ष अवकलन करने पर ` (dy)/(dx) =2log (x+sqrt(x^(2)+1))(d)/(dx) log (x+sqrt(x^(2)+1))` ` =2 log (x+ sqrt(x^(2)+1)*(1)/(x+sqrt(x^(2)+1))*(d)/(dx) (x+sqrt(x^(2)+1))` ` =(2log (x+sqrt(x^(2 +1))))/(x+sqrt(x^(2)+1))*(1+(1)/(2sqrt(x^(2)+1))2x)` ` (2log (x+sqrt(x^(2)+_1)))/(x+sqrt(x^(2)+1))*(sqrt(x^(2)+1)+x)/(sqrt(x^(2) +1))` ` =(2log (x+sqrt(x^(2) +1)))/(sqrt(x^(2)+1))` `rArr" " (sqrt(x^(2)+1))(dy)/(dx) =2log (x+sqrt(x^(2)+1 ))` ` rArr" "(x^(2)+1) ((dy)/(dx) )^(2)=4 [log (x+ sqrt(x^(2)+1 ))]^(2) ` ` rArr " "(x^(2)+1) ((dy)/(dx) )^(2)=4y` अब दोनों पक्षों का x के सापेक्ष अवकलन करने पर `(x^(2)+1) *2((dy)/(dx) )((d^(2)y)/(dx^(2))) +((dy)/(dx))^(2)*2x =4 (dy)/(dx)` ` rArr " "2(x^(2)+1)(d^(2)y)/(dx^(2))+x (dy)/(dx) =2 ` पुनः दोनों पक्षों का x के सापेक्ष अवकलन करने पर ` [(x^(2)+1)(d^(3)y)/(dx^(3) )+2x (d^(2)y)/(dx^(2)) ]+[(dy)/(dx)+ x(d^(2)y)/(dx^(2))]=0` ` rArr " " (x^(2)+1) (d^(3)y)/(dx^(3))+3x (d^2y)/(dx^(2))+(dy)/(dx) =0` |
|