1.

यदि ` y= (sin ^(-1) x)/(sqrt((1-x^(2)))).` तब सिद्ध कीजिए की, ` (1-x^(2) )(dy)/(dx) =xy+1`

Answer» `" "y=(sin^(-1) x)/(sqrt(1-x^(2)))`
` therefore (dy)/(dx) (sqrt((1-x^(2)))(d)/(dx) sin ^(-1) x-sin ^(-1) x(d)/(dx) (1-x^(2))^(1//2))/((1-x^(2)))`
` rArr " "(1-x^(2))(dy)/(dx) =1-sin ^(-1) x*(1(-2x))/(2sqrt(1-x^(2)))`
` " "= 1+x(sin ^(-1) x)/(sqrt(1-x^(2)))=1+xy" "` [समी०(1 )से ]


Discussion

No Comment Found