1.

यदि `y=sqrt((1-sin2x)/(1+sin2x))`, तो सिद्ध कीजिए कि `(dy)/(dx)+sec^(2)((pi)/(4)-x)=0.`

Answer» `y=sqrt((1-sin2x)/(1+sin2x))`
`=sqrt((cos^(2)x+sin^(2)x-2sin x cosx)/(cos^(2)x+sin^(2)x+2sin x cos x))`
`=sqrt(((cosx-sinx)^(2))/((cosx+sinx)^(2)))=(cosx-sinx)/(cosx+sinx)`
`=(1-tanx)/(1+tanx)=(tan.(pi)/(4)-tanx)/(1+tan.(pi)/(4).tanx)`
`=tan((pi)/(4)-x)`
`rArr" "(dy)/(dx)=(d)/(dx)tan((pi)/(4)-x)`
`=sec^(2)((pi)/(4)-x)(d)/(dx)((pi)/(4)-x)`
`=-sec^(2)((pi)/(4)-x)`
`rArr" "(dy)/(dx)+sec^(2)((pi)/(4)-x)=0` यही सिद्ध करना था ।


Discussion

No Comment Found